
Enumeration of directed site animals on two-dimensional lattices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 L279

(http://iopscience.iop.org/0305-4470/15/6/006)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) L279-L284. Printed in Great Britain 

LElTER TO THE EDITOR 

Enumeration of directed site animals on two-dimensional 
lattices 

Deepak Dhar, Mohan K Phani and Mustansir Barma 
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay400 005, India 

Received 1 February 1982 

Abstract. We study the problem of directed site animals on the square, triangular and 
hexagonal lattices. We propose closed form expressions for A(s) ,  the number of animals 
of size s, on the square and triangular lattices. These expressions have been checked for 
s s 33 and s s 10 for the square and triangular lattices respectively by explicit enumeration. 
They imply that A(s)  varies as Ass-' for large s, where A = 3 for the square lattice, and 
A = 4 for the triangular, and 8 = f for both. For the hexagonal lattice, we have found A(s) 
for s s 48, and our results are consistent with A = 2.0252 f 0.0005 and 8 = f. 

The problem of enumeration of animals of a given size is an old one (Harary 1967, 
Domb 1976, Klarner 1981). It corresponds to the p - 0  limit of the percolation 
problem (Duarte 1978,1979, Stauffer 1979) and is also related to the study of branched 
polymers in the dilute limit (Lubensky and Isaacson 1978a, b, 1979). Closed form 
expressions for the number of animals in terms of their size are known only for graphs 
with no cycles (Fisher and Essam 1961, Harary et a1 1975), though some critical 
indices are known in two and three dimensions (Parisi and Sourlas 1981). 

In this Letter, we enumerate animals defined on directed lattices. The problem 
is closely related to that of directed percolation (Cardy and Sugar 1980, Kinzel and 
Yeomans 1981). We study directed site animals on the acyclic directed square, 
triangular and the hexagonal lattices (figure 1). The corresponding directed site- 
percolation problem has been studied earlier by Bishir (1963), and is believed to lie 
in the same universality class as the directed bond-percolation. 

A directed animal is defined as a set of lattice sites d such that each site a ~d 
is reachable from a given !ked site (say the origin) by directed paths such that all 

Figure 1. The orientations of the bonds in the directed square, triangular and hexagonal 
lattices considered in the text are shown in (a) ,  ( b )  and ( c )  respectively. The full and open 
circles in ( c )  denote sites belonging to sublattices St and S2 respectively. 
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sites lying on the path are in d. Note that the origin belongs to d. The size of an 
animal d is the number of sites in d and is denoted by ldl. The perimeter of d is 
defined as the number of points not in d which can be reached from some point in 
d by a single directed bond. 

We define the generating function G ( x ,  y )  as the sum of weights of all animals, 
the weight of an animal of size s and perimeter t being x S y r .  

G ( x ,  y )  = c x s y f  = A(s, t )  x E y *  
d s, r 

where A(s, t )  is the number of animals of size s and perimeter t. 

the corresponding site percolation problem, 
G ( z p ,  1 - p )  is the generating function for the cluster size distribution function of 

where Ps(p) is the probability that a cluster defined with the origin as source contains 
s sites. Here p is the concentration of occupied sites. G ( x ,  y = 1 )  defines the 
generating function of the site animal problem 

G(X,  y = 1 )  = A ( ~ ) x '  
S 

(3) 

where A(s)  = Z , A ( s ,  t )  is the total number of site animals of size s. As in the case of 
undirected animals, for large s, A(s)  is expected to have the asymptotic form 

A(S)-CA~S-'. (4) 
Here C and A are constants, different for different lattices, and f3 is a critical exponent. 

Let the generating functions for the square and triangular lattices be denoted by 
G S q ( x ,  y )  and G t r ( x ,  y ) .  On the hexagonal lattice, there are two sublattices S1 and Sz. 
Sites on sublattice S1 have two incoming bonds, while those on sublattice Sz have 
only one incoming bond. We define two generating functions Giex ( x , y )  and 
G?(x ,  y ) ,  depending on whether the source lies on S1 or S2. Clearly 

G:eX(x, y ) = x [ l + G Y ( x ,  y ) ] .  ( 5 )  

S1 and Sz are isomorphic to the square lattice, and with any animal d on the 
hexagonal lattice is associated an animal d' (of size s' and perimeter t') on Sz. To 
find G?(x ,  y ) ,  we first sum over the weights of all animals d consistent with a given 
d', and then sum over all d'. If a site other than the origin is in d', the S1 site 
leading to it must be in d. Either a perimeter site of d' is a perimeter site of at 
(weight x y ) ,  or the S1 site leading to it is a perimeter site of d (weight y ) .  Thus the 
sum of all animals sa consistent with a given d' of size s' and perimeter t' is 
xZs"-'(y + x y ) " .  It follows that 

(6) G F ( x ,  y )  = ( l / x ) G " ( x 2 ,  y + x y ) .  
This implies that the critical percolation probability for the directed site problem on 
the square lattice is the square of the value on the hexagonal lattice. 

It is useful to consider animals with more than one point as sources. Let 8 = 
{ ( X I ,  y l ) ,  ( X Z ,  y 2 ) ,  . . . , (xn, y , ) }  be a set of source points whose Cartesian coordinates 
are (xi, y i ) .  An animal d with source W is a set of points such that each (Y ~d is 
reachable from at least one of the points in W using directed paths which do not visit 
any site outside d. The source W is a subset of the animal d. Let A ~ ( S )  be the 
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number of animals having s sites and generated from the source set 44. We shall be 
concerned only with those sets 44 where all the source sites lie on a line x + y = constant 
(figure 1). Let n~p be the number of sites in 44. We define the length of 44 to be 
(xmu - xmin + 1) where xmu and xmln are the maximum and minimum x-coordinates 
of the source sites. We call the set 44 compact if its length is equal to ngp. It is quite 
easy to write down relations between Aa(s) with different source sets 44. Consider, 
for definiteness, the square lattice. Let 440, 44; and 9T2 denote the source sets 
((0, O)}, ((1, 0)}, ((0, 1)) and ((1, 0), (0, 1)) respectively. Then, clearly, for all s > 1 

A%(s) =Aa1(s - 1) +AB; (S - 1) + A ~ , ( S  - 1). (7) 

As Awo(s) = Aa1(s) = Aa;(s) by translational invariance, we obtain 

A%(s) = ~ A % ( s  - 1) +Aa,(s - 1). (8) 

Thus Awo(s) (same as A(s) defined earlier) can be determined for all s, if Aa,(s) are 
known. These, in turn, can be expressed in terms of animals with fewer sites. For 
example, if B3 = ((2, 0), (0,2)} and 3; = {(2,0), (0,2), (1, l)}, we obtain using transla- 
tional invariance 

A~, (s )  = 3Agp,(~ -2)  +2Agp,(s -2)  +Agp,(~ -2)  +A,;(s -2). (9) 

We also notice that for all s 

A ~ , ( s )  = A ~ ; ( s  + 1). (10) 

Here 44; is a compact source but B3 is not. 
We have written a computer program which combines such recursions with explicit 

cluster counting for small s. The required recursion relations are generqted by the 
program itself. Animals up to size 33 on the square lattice and up to size 48 on the 
hexagonal lattice were generated, each in about 1 hour of CPU time, on the CYBER 
170-730 computer. For the triangular lattice, only straightforward generation was 
employed, and in about the same time only animals up to size 10 were generated. 
Our results are displayed in table 1. 

The recursion relations used in the cluster enumeration involve both compact and 
non-compact sources. For a given length of 44, there are many non-compact sources 
but only one compact source. Let N :  be the number of animals of size s from a 
compact source of length r. Clearly A(s) = N ; .  From our data, we noticed a rather 
non-trivial relation between these numbers N:. For the square lattice, the relation is 

(11) 

This has been verified for all r + s s 34 and 1 s r s 10. For the triangular lattice, the 
relation is 

N :  = NiI i  + Ni-' + N:::. 

N :  = N : I i  +2N:-'  +N: ; : .  (12) 

This has been verified only for r = 1. 
Equations (11) and (12) hold for r = 1 also, with the definition N i  = N i .  The 

relations are important observations as, if we assume that these hold exactly for all r 
and s, they can be solved to give closed form expressions for N:. We use the boundary 
conditions that N :  = a,, and NI, = N I ,  for all r and s. 
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Table 1. The number of directed site animals on some two-dimensional lattices determined 
by cluster counting using a computer. For the hexagonal lattice, the source site is assumed 
to be on the sublattice S1. 

n Triangular Square Hexagonal 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

1 
3 

10 
35 

126 
462 

1716 
6 435 

24 310 
92 378 

1 1 
2 2 
5 3 

13 6 
35 11 
96 21 

267 40 
750 77 

2 123 149 
6 046 289 

17 303 563 
49 721 1099 

143 365 2 152 
414 584 4 222 

1201 917 8 299 
3 492 117 16 339 

10 165 779 32 217 
29 643 870 63 612 
86 574 831 125 753 

253 188 111 248 870 
741 365 049 493 015 

2173243128 977 576 
6 377 181 825 1 940 042 

18 730 782 252 3 853 117 
55 062 586 341 7 658 211 

161995031226 15 231 219 
476941691177 30 312 012 

1405155255055 60 360 046 
4 142 457 992 363 120 260 317 

12 219 350 698 880 239 727 623 
36064309311811 478 105 086 

106 495 542 464 222 953 950 878 
314 626 865 716 275 1 904 209 707 

3 802 587 910 
7596437240 

15180921041 
30348394157 
60689739010 

121 403 119 626 
242925445980 
486 226 668 328 
973467761968 

1 949 468 395 563 
3 904 970 715 501 
7 823 372 468 948 

15 679 198 951 587 
31 428 242 462 299 
63 009 591 480 990 
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For the square lattice, we obtain 
27r 

N ;  =- I dk (l+eik)e-irk (1+2cosk)"-' 
27r 0 

and for the triangular lattice 
27r 

N :  =- I dk (1 + eik) e-irk (2 + 2 cos k ) s - l .  
27r 0 

Putting r = 1 in equations (13) and (14), we obtain 

[d21 (s - 4 )  
Square lattice: A(s)  = (S - l)! 

q = o  (4! )2 ( s  -24)! ' 

Triangular lattice: A(s)  = "-'CS. (16) 

Equations (15) and (16) check against all the entries in table 1, and it seems reasonable 
to conjecture that they hold for all s. This would imply that for the square and 
triangular lattices A is exactly 3 and 4 respectively, and 6 = $. 

For the hexagonal lattice, we have not been able to guess a closed form expression 
for A(s) .  However, guided by the results of square and triangular lattices, we tried 
a four-parameter fit to log A(s)  of the form 

log A(s)  - s log A + U -$  log s + b/s  + c/s'. (17) 

For s lying between 20 and 48, we find a good fit for A =2.0252*0.0005. The 
estimate of error is based on the different values of A obtained by fitting the form 
(17) to different ranges of s, and also by trying other asymptotically equivalent 
functional forms, e.g. 

logA(s)-s logA +u-$log(s+b)+c/s2. (18) 

The simplicity of equation (13) and equation (14) suggests that the two-dimensional 
directed site animal problem is exactly soluble. It seems likely that the solution would 
involve proving the interesting and non-trivial combinatorial relations (1 1) and (12). 

Note added in proof. In a recent preprint Redner and Yang (1982) have studied directed bond animals on 
hypercubical lattices in two to eight dimensions. Their results are consistent with the value e=; for 
two-dimensional directed bond animals also. 
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